Home Stamp collecting Quantum abnormal Hall effect from interlaced moire bands

Quantum abnormal Hall effect from interlaced moire bands

0


[ad_1]

  • 1.

    Wu, F., Lovorn, T., Tutuc, E. & MacDonald, AH Hubbard Physics of moire-band models of transition metal dichalcogenides. Phys. Rev. Lett. 121, 026402 (2018).

    ADS CAS PubMed Google Scholar

  • 2.

    Regan, EC et al. Generalized Mott and Wigner crystal states in WSe2/ WS2 moiré superlattices. Nature 579, 359-363 (2020).

    ADS CAS PubMed Google Scholar

  • 3.

    Tang, Y. et al. Simulating the physics of Hubbard models in WSe2/ WS2 moiré superlattices. Nature 579, 353-358 (2020).

    ADS CAS PubMed Google Scholar

  • 4.

    Wang, L. et al. Electronic phases correlated in twisted bilayer transition metal dichalcogenides. Nat. Check out. 19, 861-866 (2020).

    ADS CAS PubMed Google Scholar

  • 5.

    Shimazaki, Y. et al. Strongly correlated hybrid electrons and excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    ADS CAS PubMed Google Scholar

  • 6.

    Xu, Y. et al. Insulating states correlated with fractional fillings of moiré superlattices. Nature 587, 214-218 (2020).

    ADS CAS PubMed Google Scholar

  • seven.

    Zhang, Y., Yuan, NFQ & Fu, L. Moiré quantum chemistry: charge transfer in transition metal dichalcogenide superlattices. Phys. Rev. B 102, 201115 (2020).

    ADS CAS Google Scholar

  • 8.

    Andrei, EY et al. The wonders of moiré materials. Nat. Reverend Mater. 6, 201-206 (2021).

    ADS CAS Google Scholar

  • 9.

    Huang, X. et al. Insulation states correlated with fractional fillings of the WS2/ WSe2 moiré lattice. Nat. Phys. 17, 715-719 (2021).

    CAS Google Scholar

  • ten.

    Jin, C. et al. Stripe phases in WSe2/ WS2 moiré superlattices. Nat. Check out. 20, 940-944 (2021).

    ADS CAS PubMed Google Scholar

  • 11.

    Li, T. et al. Continuous Mott transition in moiré semiconductor superlattices. Nature 597, 350-354 (2021).

    ADS CAS PubMed Google Scholar

  • 12.

    Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345-349 (2021).

    ADS CAS Google Scholar

  • 13.

    Hasan, MZ & Kane, CL Conference: topological insulators. Rev. Mod. Phys. 82, 3045-3067 (2010).

    ADS CAS Google Scholar

  • 14.

    Andrei, EY & MacDonald, AH Graphene bilayers with a twist. Nat. Check out. 19, 1265-1275 (2020).

    ADS CAS PubMed Google Scholar

  • 15.

    Balents, L., Dean, CR, Efetov, DK & Young, AF Superconductivity and strong correlations in flat moire bands. Nat. Phys. 16, 725-733 (2020).

    CAS Google Scholar

  • 16.

    Kennes, DM et al. Moiré heterostructures as a condensed matter quantum simulator. Nat. Phys. 17, 155-163 (2021).

    CAS Google Scholar

  • 17.

    Serlin, M. et al. Intrinsic quantified abnormal Hall effect in a moiré heterostructure. Science 367, 900-903 (2020).

    ADS CAS PubMed Google Scholar

  • 18.

    Sharpe, AL et al. Ferromagnetism emerge nearly three-quarters filling the twisted bilayer graphene. Science 365, 605-608 (2019).

    ADS CAS PubMed Google Scholar

  • 19.

    Chen, G. et al. Correlated Chern isolator and ferromagnetism tunable in a moiré superlattice. Nature 579, 56-61 (2020).

    ADS CAS PubMed Google Scholar

  • 20.

    Cao, Y. et al. Unconventional superconductivity in magic angle graphene superlattices. Nature 556, 43-50 (2018).

    ADS CAS PubMed Google Scholar

  • 21.

    Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, AH Topological insulators in twisted transition metal dichalcogenide homobic layers. Phys. Rev. Lett. 122, 086402 (2019).

    ADS CAS PubMed Google Scholar

  • 22.

    Devakul, T., Crépel, V., Zhang, Y. and Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commmon. https://doi.org/10.1038/s41467-021-27042-9 (2021).

  • 23.

    Hohenadler, M. & Assaad, FF Correlation effects in two-dimensional topological insulators. J. Phys. Condense. Matter 25, 143201 (2013).

    ADS CAS PubMed Google Scholar

  • 24.

    Witczak-Krempa, W., Chen, G., Kim, YB & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57-82 (2014).

    ADS CAS Google Scholar

  • 25.

    Pesin, D. & Balents, L. Mott Physics and topology of bands in materials with strong spin-orbit interaction. Nat. Phys. 6, 376-381 (2010).

    CAS Google Scholar

  • 26.

    Raghu, S., Qi, X.-L., Honerkamp, ​​C. & Zhang, S.-C. Mott’s topological isolators. Phys. Rev. Lett. 100, 156401 (2008).

    ADS CAS PubMed Google Scholar

  • 27.

    Zhang, Y., Devakul, T. & Fu, L. Spin-textured Chern bands in stacked transition metal dichalcogenide bilayers AB. Proc. Natl Acad. Sci. United States 118, e2112673118 (2021).

    Google School CAS PubMed Fellow

  • 28.

    Chang, C.-Z. et al. Experimental observation of the quantum abnormal Hall effect in a magnetic topological insulator. Science 340, 167-170 (2013).

    ADS CAS PubMed Google Scholar

  • 29.

    Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

    ADS PubMed Google Scholar

  • 30.

    Mogi, M. et al. Magnetic modulation doping in topological insulators towards an abnormal quantum Hall effect at high temperature. Appl. Phys. Lett. 107, 182401 (2015).

    Google Scholar ADS

  • 31.

    Liu, C.-X., Zhang, S.-C. & Qi, X.-L. The quantum abnormal Hall effect: theory and experimentation. Annu. Rev. Condens. Matter Phys. seven, 301-321 (2016).

    Google Scholar ADS

  • 32.

    MacDonald, AH Introduction to the physics of the quantum Hall regime. Preprint on arXiv: cond-mat / 9410047 (1994).

  • 33.

    Young, AF et al. Tunable symmetry breaking and helical edge transport in a quantum spin Hall state of graphene. Nature 505, 528-532 (2014).

    ADS CAS PubMed Google Scholar

  • 34.

    Li, T. et al. Improved capacity in order of load in moiré semiconductor superlattices. Nat. Nanotechnology. 16, 1068-1072 (2021).

    ADS CAS PubMed Google Scholar

  • 35.

    YM Xie, CP Zhang, JX Hu, KF Mak & Law, KT Theory of the valley polarized quantum anomalous Hall state in the MoTe moiré2/ WSe2 heterobicouches. Preprint at arXiv: 2106.13991 (2021).

  • 36.

    Fei, Z. et al. WTe monolayer edge conduction2. Nat. Phys. 13, 677-682 (2017).

    CAS Google Scholar

  • 37.

    Amaricci, A., Budich, JC, Capone, M., Trauzettel, B. & Sangiovanni, G. First order character and observable signatures of topological quantum phase transitions. Phys. Rev. Lett. 114, 185701 (2015).

    ADS CAS PubMed Google Scholar

  • 38.

    Ezawa, M., Tanaka, Y. & Nagaosa, N. Topological phase transition without space closure. Sci. representing 3, 2790 (2013).

    ADS PubMed PubMed Central Google Scholar

  • 39.

    Senthil, T. Theory of a continuous Mott transition in two dimensions. Phys. Rev. B 78, 045109 (2008).

    Google Scholar ADS

  • 40.

    Wang, L. et al. One-dimensional electrical contact with two-dimensional material. Science 342, 614-617 (2013).

    ADS CAS PubMed Google Scholar

  • 41.

    Zibrov, AA et al. Phases of composite fermions in tunable interaction in a semi-filled bilayer-graphene Landau level. Nature 549, 360-364 (2017).

    ADS CAS PubMed Google Scholar

  • 42.

    Ashoori, RC et al. Monoelectronic capacitive spectroscopy of discrete quantum levels. Phys. Rev. Lett. 68, 3088-3091 (1992).

    ADS CAS PubMed Google Scholar

  • 43.

    Xie, Y.-M., Zhang, C.-P., Hu, J.-X., Mak, KF & Law, K. Theory of anomalous Hall state quantum polarized of valley in moiré MoTe2/ WSe2 heterobicouches. Preprint at arXiv: 2106.13991 (2021).

  • 44.

    Perdew, JP, Burke, K. & Ernzerhof, M. Simplified generalized gradient approximation. Phys. Rev. Lett. 77, 3865-3868 (1996).

    ADS CAS PubMed PubMed Central Google Scholar

  • 45.

    Peng, H., Yang, Z.-H., Perdew, JP & Sun, J. Van der Waals polyvalent density function based on a meta-generalized gradient approximation. Phys. Tower. 6, 041005 (2016).

    Google Scholar

  • 46.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a basic set of plane waves. Calculation. Check out. Sci. 6, 15-50 (1996).

    CAS Google Scholar

  • 47.

    Liu, G.-B., Xiao, D., Yao, Y., Xu, X. & Yao, W. Electronic structures and theoretical modeling of two-dimensional VIB transition metal dichalcogenides. Chem. Soc. Tower. 44, 2643-2663 (2015).

    Google School CAS PubMed Fellow

  • [ad_2]