
[ad_1]
Wu, F., Lovorn, T., Tutuc, E. & MacDonald, AH Hubbard Physics of moire-band models of transition metal dichalcogenides. Phys. Rev. Lett. 121, 026402 (2018).
Regan, EC et al. Generalized Mott and Wigner crystal states in WSe2/ WS2 moiré superlattices. Nature 579, 359-363 (2020).
Tang, Y. et al. Simulating the physics of Hubbard models in WSe2/ WS2 moiré superlattices. Nature 579, 353-358 (2020).
Wang, L. et al. Electronic phases correlated in twisted bilayer transition metal dichalcogenides. Nat. Check out. 19, 861-866 (2020).
Shimazaki, Y. et al. Strongly correlated hybrid electrons and excitons in a moiré heterostructure. Nature 580, 472â477 (2020).
Xu, Y. et al. Insulating states correlated with fractional fillings of moiré superlattices. Nature 587, 214-218 (2020).
Zhang, Y., Yuan, NFQ & Fu, L. Moiré quantum chemistry: charge transfer in transition metal dichalcogenide superlattices. Phys. Rev. B 102, 201115 (2020).
Andrei, EY et al. The wonders of moiré materials. Nat. Reverend Mater. 6, 201-206 (2021).
Huang, X. et al. Insulation states correlated with fractional fillings of the WS2/ WSe2 moiré lattice. Nat. Phys. 17, 715-719 (2021).
Jin, C. et al. Stripe phases in WSe2/ WS2 moiré superlattices. Nat. Check out. 20, 940-944 (2021).
Li, T. et al. Continuous Mott transition in moiré semiconductor superlattices. Nature 597, 350-354 (2021).
Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345-349 (2021).
Hasan, MZ & Kane, CL Conference: topological insulators. Rev. Mod. Phys. 82, 3045-3067 (2010).
Andrei, EY & MacDonald, AH Graphene bilayers with a twist. Nat. Check out. 19, 1265-1275 (2020).
Balents, L., Dean, CR, Efetov, DK & Young, AF Superconductivity and strong correlations in flat moire bands. Nat. Phys. 16, 725-733 (2020).
Kennes, DM et al. Moiré heterostructures as a condensed matter quantum simulator. Nat. Phys. 17, 155-163 (2021).
Serlin, M. et al. Intrinsic quantified abnormal Hall effect in a moiré heterostructure. Science 367, 900-903 (2020).
Sharpe, AL et al. Ferromagnetism emerge nearly three-quarters filling the twisted bilayer graphene. Science 365, 605-608 (2019).
Chen, G. et al. Correlated Chern isolator and ferromagnetism tunable in a moiré superlattice. Nature 579, 56-61 (2020).
Cao, Y. et al. Unconventional superconductivity in magic angle graphene superlattices. Nature 556, 43-50 (2018).
Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, AH Topological insulators in twisted transition metal dichalcogenide homobic layers. Phys. Rev. Lett. 122, 086402 (2019).
Devakul, T., Crépel, V., Zhang, Y. and Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commmon. https://doi.org/10.1038/s41467-021-27042-9 (2021).
Hohenadler, M. & Assaad, FF Correlation effects in two-dimensional topological insulators. J. Phys. Condense. Matter 25, 143201 (2013).
Witczak-Krempa, W., Chen, G., Kim, YB & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57-82 (2014).
Pesin, D. & Balents, L. Mott Physics and topology of bands in materials with strong spin-orbit interaction. Nat. Phys. 6, 376-381 (2010).
Raghu, S., Qi, X.-L., Honerkamp, ââC. & Zhang, S.-C. Mott’s topological isolators. Phys. Rev. Lett. 100, 156401 (2008).
Zhang, Y., Devakul, T. & Fu, L. Spin-textured Chern bands in stacked transition metal dichalcogenide bilayers AB. Proc. Natl Acad. Sci. United States 118, e2112673118 (2021).
Chang, C.-Z. et al. Experimental observation of the quantum abnormal Hall effect in a magnetic topological insulator. Science 340, 167-170 (2013).
Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).
Mogi, M. et al. Magnetic modulation doping in topological insulators towards an abnormal quantum Hall effect at high temperature. Appl. Phys. Lett. 107, 182401 (2015).
Liu, C.-X., Zhang, S.-C. & Qi, X.-L. The quantum abnormal Hall effect: theory and experimentation. Annu. Rev. Condens. Matter Phys. seven, 301-321 (2016).
MacDonald, AH Introduction to the physics of the quantum Hall regime. Preprint on arXiv: cond-mat / 9410047 (1994).
Young, AF et al. Tunable symmetry breaking and helical edge transport in a quantum spin Hall state of graphene. Nature 505, 528-532 (2014).
Li, T. et al. Improved capacity in order of load in moiré semiconductor superlattices. Nat. Nanotechnology. 16, 1068-1072 (2021).
YM Xie, CP Zhang, JX Hu, KF Mak & Law, KT Theory of the valley polarized quantum anomalous Hall state in the MoTe moiré2/ WSe2 heterobicouches. Preprint at arXiv: 2106.13991 (2021).
Fei, Z. et al. WTe monolayer edge conduction2. Nat. Phys. 13, 677-682 (2017).
Amaricci, A., Budich, JC, Capone, M., Trauzettel, B. & Sangiovanni, G. First order character and observable signatures of topological quantum phase transitions. Phys. Rev. Lett. 114, 185701 (2015).
Ezawa, M., Tanaka, Y. & Nagaosa, N. Topological phase transition without space closure. Sci. representing 3, 2790 (2013).
Senthil, T. Theory of a continuous Mott transition in two dimensions. Phys. Rev. B 78, 045109 (2008).
Wang, L. et al. One-dimensional electrical contact with two-dimensional material. Science 342, 614-617 (2013).
Zibrov, AA et al. Phases of composite fermions in tunable interaction in a semi-filled bilayer-graphene Landau level. Nature 549, 360-364 (2017).
Ashoori, RC et al. Monoelectronic capacitive spectroscopy of discrete quantum levels. Phys. Rev. Lett. 68, 3088-3091 (1992).
Xie, Y.-M., Zhang, C.-P., Hu, J.-X., Mak, KF & Law, K. Theory of anomalous Hall state quantum polarized of valley in moiré MoTe2/ WSe2 heterobicouches. Preprint at arXiv: 2106.13991 (2021).
Perdew, JP, Burke, K. & Ernzerhof, M. Simplified generalized gradient approximation. Phys. Rev. Lett. 77, 3865-3868 (1996).
Peng, H., Yang, Z.-H., Perdew, JP & Sun, J. Van der Waals polyvalent density function based on a meta-generalized gradient approximation. Phys. Tower. 6, 041005 (2016).
Google Scholar
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a basic set of plane waves. Calculation. Check out. Sci. 6, 15-50 (1996).
Liu, G.-B., Xiao, D., Yao, Y., Xu, X. & Yao, W. Electronic structures and theoretical modeling of two-dimensional VIB transition metal dichalcogenides. Chem. Soc. Tower. 44, 2643-2663 (2015).
[ad_2]